2009 年第廿屆國際生物奧林匹亞競賽 --實驗試題(1)

中華民國生物奧林匹亞競賽代表團

實驗一:動植物解剖

總分:100分

總操作時間:90分鐘

第一部分動物解剖(50分)

【材料與器材】

- ▶ 瓶中裝有兩隻已經麻醉的蠶蛾幼蟲
- ▶ 瓶中裝有一隻未麻醉的蠶蛾幼蟲
- ▶ 解剖盤1個
- ▶ 鑷子2隻
- ▶ 剪刀1把
- ▶ 拋棄式滴管 1 支
- ▶ 有柄的解剖針2支
- ▶ 解剖用之固定針 20 支
- ▶ 具有光源的解剖顯微鏡1台
- ➤ 有色鉛筆一組:1 枝 "O"(橘色),1 枝 "B"(藍色)和 1 枝 "G"(綠色)
- ▶ 一張已經解剖過的蠶蛾幼蟲照片(信封 袋內)
- ▶ 一個存放棄置幼蟲的培養皿

【簡介】

雖然有些昆蟲的發育須經過完全變態的過程,但昆蟲的成體和幼體之間,身體的構造基本上是相通的,先仔細觀察一隻未麻醉的蠶蛾幼蟲,再觀察已經麻醉並

解剖的蠶蛾幼蟲後,請回答下列問題。當你解剖這些幼蟲時,請先在解剖盤中加水 後再進行。解剖過程中請使用鑷子、剪刀、 解剖針及固定針。

問題 1.1 (2分)

昆蟲的身體由頭、胸及腹部三部份所組成,請用橘色"O"的筆劃線,將答案卷上幼蟲照片中的頭部和胸部區分出來。再用藍色"B"的筆劃線,將胸部和腹部區分出來。

問題 1.2 (2分)

在幼蟲頭部的兩側,可見到一個眼斑,請你計算每一個眼斑中有多少小眼, 並將數量填於答案卷上(例如 4,6,9)

問題 1.3 (3分)

昆蟲藉由氣管系統來進行呼吸,氣管 系統與外界相通的孔道稱為氣孔。請計算 在你面前的幼蟲有多少對的氣孔,並將對 數填於答案卷上(例如 4,6,9)

問題 1.4 (18分)

信封袋中的相片顯示一隻已經解剖的蠶蛾幼蟲的背面觀。請解剖這隻已經麻醉的蠶蛾幼蟲如照片所示(解剖過程中如果不慎毀壞,可再用另一隻幼蟲),當你完

成解剖時,請舉手通知監試人員,監試人 員會照相將你的結果記錄下來,以供評分 用。(6分)

(請記得確認監試人員所照的相片,是 否能完全呈現你所完成的解剖結果)

仔細觀察蠶蛾幼蟲的內部構造,注意 觀察三種管狀構造 A.B 及 C 出現的地 方,依據下列所提供的名稱 1-10 及功能 a-i ,回答此三種管狀構造 A,B 及 C 的名 稱及功能。

名稱:

1. 唾液腺

2. 輸卵管

3. 馬氏管

4. 盲腸

5. 氣管

6. 前胸腺

7. 絲線

8. 咽側腺

9. 脂肪體

10. 輸精管

功能:

a. 分泌年輕激素 b. 幫助消化

c. 呼吸

d. 分泌絲

e. 分泌前胸腺激素 f. 儲存脂肪

g. 排泄

h. 輸送卵

i. 輸送精子

j. 分泌唾液

問題 1.5 (6分)

昆蟲的身體具有不同的器官系統,仔 細觀察未麻醉和已經麻醉的幼蟲,觀察中 樞神經系統,消化系統(消化管)及循環系 統(心)所在的位置,並利用下列指定顏色 的筆,將所觀察到的位置和範圍畫於答案 卷的圖像上。

中樞神經系統以橘色 "O"的筆畫出 消化系統以藍色 "B"的筆畫出 循環系統以綠色 "G"的筆畫出

注意: 只需將各系統所在的位置和範圍畫 出即可,不需書出詳細形狀。但消 化系統(消化管)例外,你必須將兩 端清楚的書出。

問題 1.6(4分)

昆蟲的中樞神經系統是神經元的細 胞體的集合,或由神經結以及連接神經結 的神經纖維束或神經纖維索所組成。觀察 你所解剖的幼蟲具有多少對神經結?(請 以阿拉伯數字表示有幾對)

問題 1.7 (12 分)

利用 Q.1.5. 所提供的圖,在圖上標示 出最前面、次前面以及最後等 3 個神經結 的位置,用黑筆以"A" 標示出最前面神 經結的位置,"2"標示出次前面神經結的 位置,"P"標示出最後神經結的位置。

問題 1.8 (2分)

請問在每一對的神經結之間有多少 條神經索,請選擇1到4中正確的數字, 填寫於答案卷中。

第二部分 植物解剖(50分)

在此部分,將觀察花與果實的形態,並探 討其發育過程。

A 部分:種子形態及儲存物質

【材料與器材】

- ▶ 裝有種子的培養皿四個,標示為 I IV
- ▶ 解剖顯微鏡(用於第1部分)
- ▶ 鑷子(用於第1部分)
- ▶ 刀片

- ▶ 解剖刀
- 染料及沖洗劑(IKI, IKI-R)、(CBB, CBB-R)、(OR, OR-R)
- ▶ 染色用的培養皿 12個

【前言】

不同種類的植物,其形態及儲存物質 不同,所儲存物質可藉染色來加以區分

問題 2.A.1 (27分)

培養皿(I-IV)中分別裝有四種不同的種子,培養皿 IV 所裝的種子是一種稱為Vigna angularis 的豆類種子,以此種子作為例子。此種子已浸泡 24 小時。其中有些種子的種皮已被剝除。使用刀片或解剖刀來解剖這些種子,分別以三種染料將種子及其切片染色,並在解剖顯微鏡下觀察染色結果(包括種子及其切片組織),仔細觀察其染色程度,並在答案卷上的 Q.2.A.1 表格中填入不同的染色程度差異:"±"代表輕度染色;"+"代表中度染色;"+*"代表中度染色;"+*"代表

注意:某些種子可能是過敏原,請戴上手套,勿直接以手觸碰。勿讓皮膚沾上染料,若不小心沾上,請用蒸餾水充分沖洗。

染料及沖洗劑

染料	沖洗劑	被染色 的物質	顔色	性質
IKI	IKI-R	澱粉	紫色	水溶液
СВВ	CBB-R	蛋白質	藍色	含有酒精 及醋酸的 溶液

OR	OR-R	脂質	紅色	含有酒精
OK	OK-K	加貝		的溶液

染色方法

- 1. 使用小培養皿來作染色與沖洗
- 2. 在染料中浸染 5-10 分鐘
- 3. 再用沖洗劑充分沖洗染色後的材料

B 部分:果實的發育

【材料與器材】

- ▶ 番茄果實標示為(A) 3 個
- ▶ 蘋果果實標示為(B) 1 個
- ➤ 信封內有一張手繪圖:包括有兩種花(I and II)和草莓果實的圖形
- ▶ 鑷子(用於第1部分)2把
- ▶ 刀片 1 支
- 彩色鉛筆 3 枝:橘色(O)、藍色(B)、 綠色(G);(用於第1部分)
- ▶ 白色解剖盤 1個

【簡介】

果實可能由單一朵花的某個部分發 育而成,故果實的形態與其花的構造關係 密切。

問題 2.B.1 (4分)

在答案卷中的 Q.2.B.1 表格中,分別 填入(A, B)果實是由相對應的何種花 (I or II)所發育而來。

問題 2.B.2 (11分)

用黑色鉛筆在答案卷的 Q.2.B.2 果實 縱切圖(A1 and B1)上畫出胚珠(或種子)、

心皮(或由心皮發育而成的組織)、以及萼片的形狀及位置,然後在此果實縱切圖(A1 and B1)上,用下列指定顏色的鉛筆將不同構造塗上不同的顏色。【參考手繪圖中草莓果實的作圖和著色方式】

胚珠(或種子):橘色鉛筆 O 心皮(或由心皮發育而成的組織): 綠色鉛筆 G

花萼:藍色鉛筆 B

問題 2.B.3 (8分)

請完成答案卷中 Q.2.B.3 的(A2 and B2)果實橫切圖(圓圈範圍),畫出果實內部不同構造的形狀及位置,再用下列指定顏色的鉛筆將不同構造途上不同的顏色:

胚珠(或種子):橘色鉛筆 O 心皮(或由心皮發育而成的組織): 綠色鉛筆 G

實驗二:生物化學

總分:100分

總操作時間:90分鐘

【光電比色計的使用方法】

- 1. 光電比色計的螢幕必須顯示 400 nm (如 Fig. 1 所示),若否,舉手通知監試人員。但螢幕上的吸光度(ABS 值)可以不是 0.000.
- 2. 在光電比色管中裝入蒸餾水(DW),至少 裝到 "shoulders" 處(如 Fig. 2 所示)。
- 3. 將光電比色管放入光電比色計中(如 Fig. 3 所示)的比色管放置處(cuvette holder),透明面須朝向左右兩側。

- 4. 關上蓋子(如 Fig. 4 所示)。
- 5. 按下'AUTO ZERO'的按紐(如 Fig. 5 所示),儀器將以此吸光值視為標準零值。本實驗將以此為標準零值(blank control)。
- 6. 接下來,你可以開始測量其他樣本的吸 光值。
- 7. 將蒸餾水換成其中一種樣本溶液,操作 同上,並讀取其吸光值。
- 8. 如果你的序列稀釋的樣本,是依濃度低 往濃度高的樣本依序測量,則在每次測 量後,你將不須清洗光電比色管。

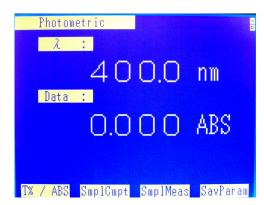


Fig. 1

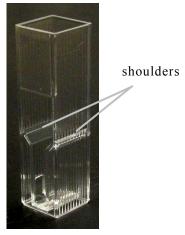


Fig. 2

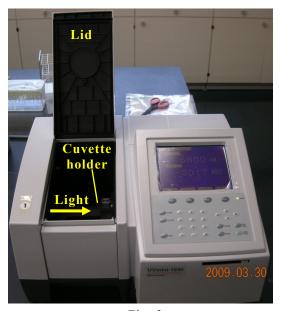


Fig. 3

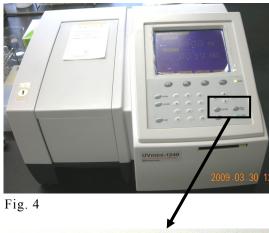


Fig. 5

【簡介】

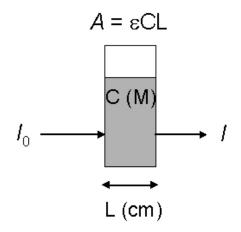
酸性磷酸酶在酸性環境中,可以將磷酸根離子從磷酸化的分子中釋出。本實驗的目的在判定酸性磷酸酶的活性。在第 1

部分,你將利用馬鈴薯的粗萃液來測量酸 性磷酸酶的活性;在第2部分,你將判定 粗萃液中所含蛋白質的濃度。<u>活性</u>在此是 指由第1、2部分所獲得之每單位時間、每 單位量的蛋白質。此<u>活性</u>可作為酶純度的 指標,當酶的活性愈高,則代表酶的純度 愈高。

注意:

- 1. 你將會使用少量的有毒物質(p-nitrophenol and NaOH),如有需要,你可穿戴丟棄式手套及護目鏡。
- 承上述的實驗結果來進行計算時,只要你計算公式正確,即使答案錯誤,仍可有部分得分。

【材料與器材】


- ▶ 光電比色計 1 個
- ▶ 微量吸管(P1000) 2 個
- ▶ 微量吸管(P200) 1 個
- ➤ 微量 Tips (one box each for P1000 and P200) 2 個
- ▶ 塑膠光電比色管 1 個
- ▶ 可容納六根試管(6-1 to 6-6) 的試管架1 個
 - 6-1.酸性磷酸酶的粗萃液(4 ml,置於 15-ml 的塑膠試管中並標示 1 倍 "1X"的酵素)
 - 6-2.0.5 M 醋酸鈉緩衝溶液(pH 5.6) (2 m1,置於 15-ml 的塑膠試管中)
 - 6-3.5 mM pNPP (4 ml in a 15-ml plastic tube)
 - 6-4. 0.5 M NaOH (8 ml in a 15-ml plastic tube)

- 6-5.3% NaCl (10 ml in a 15-ml plastic tube)
- 6-6. Test tubes (Glass)

第一部分 酸性磷酸酶活性的測量 (70分)

酸性磷酸酶活性的測定原理,在於此 酶 可 催 化 將 p-nitrophenyl phosphate (pNPP)轉化成 p-nitrophenol (pNP)的酵素 反應過程。此反應會釋出磷酸根,且其產 物 pNP 在極度鹼性的環境中,於 400 nm 的吸收光譜下的吸光係數(absorption coefficient*(ε_{400 nm})) 為 19000 M⁻¹ cm⁻¹。 進行酸性磷酸酶的反應時,其反應混合液 具有微酸性,故若需量化 pNP,必須將混 合液轉成鹼性。在實驗 1, 你將測量加入 1 ml 的粗萃液後之反應的時間歷程及每分 鐘所得之吸光值改變。利用ε_{400 nm} 可將此 吸光值改變換算成濃度改變的數值,然 後,再將換算得的濃度數值乘以你當初測 定的樣本體積,即可計算出反應中 pNP 分 子的莫耳數。

【什麽是吸光係數?】

- A, absorbance 吸光值
- ε, absorption coefficient (M⁻¹cm⁻¹)吸光係數
- C, concentration (M=mol litre⁻¹) 濃度
- L, light path length (cm) 比色管中,光所 經過的路徑長度
- I₀, intensity of incident light 入射光之強度
- I, intensity of transmission light 透射光之強度

吸光值是溶液的一種物理-化學特性,其顯示溶劑在某種特定光波長下所能吸收光的程度。吸光值與濃度(C)及比色管中光所經過的路徑長度(L)成比例。公式中的常數(ϵ)代表溶劑的特性,稱為吸光係數(ϵ)。因此,以此 $A=\epsilon$ C ($M=mollitre^{-1}$) L (m)公式表示這些因子之間的關係。由於 ϵ 是已知值,且 L 在此實驗中是 1 m,故吸光值可轉換成濃度。 ϵ 的單位為 M^{-1} m^{-1} ,因為吸光值是沒有單位的絕對值。

在實驗 1,有兩種不同濃度的酶被檢測,選取標示 1 倍(1X)酶的試管,其內為含有酸性磷酸酶的粗萃液。而後,從含有3% NaCl 溶液的 15-ml 試管中取出 1 ml,此時試管中只剩 9 ml 的 3% NaCl,接著以微量吸管量取 1 ml 的 1 倍 (1X) 酶加入試管中,而得到 0.1 倍(0.1X)酶,標示此試管為 0.1 倍(0.1X)。接下來,取 6 個空試管,標示每個試管之酶濃度與反應時間如下:

0.1X, 20 min

1X, 20 min

0.1X, 10 min

1X, 10 min

0.1X, 1 min 1X, 1 min

問題 1.1 (10分)

首先規劃一個可以一次完成所有反應的實驗設計,在答案卷上針對每個反應,將你的實驗設計填入答案卷上 Q.1.1. 的表格中,以(○)表示反應開始,(●)表示反應停止,實驗設計時,在各反應作用之間至少要有 1 分鐘的間隔,以方便操作。注意!答案卷 Q.1.1.表格中有一個範例,是反應'0.1x, 20 min'的實驗設計方式,請依此範例,完成其他反應的實驗設計。

問題 1.2 (10分)

根據下列所敘述的步驟,並配合你在上題(Q.1.1.)所列的實驗流程,在每次操作中,請用新的微量吸管頭(tip);在每次加入藥品後,立即輕彈試管以混合溶液。當你進行所有的反應後,測定各樣本之 A_{400} (400 nm 光源下的吸光值),將所得的結果填於答案卷的表格中,並根據此數據作圖。請注意:由於本實驗採用水當作標準零值(blank),所以作圖所得的直線將不會通過 Y 軸的 0 點。

【酸性磷酸酶活性之測定方法】

- 1. 在試管中加入 0.12 ml 的 0.5 M 醋酸鈉 以及 0.24 ml 的 5 mM pNPP,混合後,再加入 0.24 ml 的酶溶液,開始反應。
- 2. 開始作用後,分別在 1,10,及 20 分鐘時,加入 0.6 ml 的 0.5 M NaOH 來終止酵素反應,NaOH 除了可終止反應外,並可將產物 pNP 轉變成黃色,此

黄色物質在 400 nm 的光照下具吸光能力 (A_{400} -absorbing)。

3. 當反應終止後,測量樣本的 A₄₀₀ 馬鈴薯之酸性磷酸酶測定

0.5 M Na acetate buffer(pH 5.6)	0.12	ml
5 mM pNPP	0.24	ml
Enzyme	0.24	ml
0.5 M NaOH	0.6	ml
Sum	1.2	ml

問題 1.3 (15分)

在時間與 A_{400} (400nm 光源下的吸光值)的關係圖中,酶的何種濃度(1X 或 0.1X)下反應顯示較佳的線性關係?在答案卷上圈選出正確答案,並從上題作圖中計算出該直線的斜率。

問題 1.4 (5分)

利用由上題中所得的斜率,計算酶的活性。方法是以其在 1 倍"1X"的酶濃度每分鐘每 ml,對 A_{400} 吸光值所造成的改變為準,且比色管中,光所經過的路徑長度 (L) 為 1cm。在答案卷上,你所寫的答案需有單位,並要有計算過程。

問題 1.5 (5分)

假設所得的 pNP 的吸光係數 ε₄₀₀ 是 19000 M⁻¹ cm⁻¹,將上題所得的吸光值變 化換算成<u>濃度</u>變化的數值。在答案卷上, 所寫的答案需以<u>每 ml 每分鐘</u>的 1 倍"1X" 酶濃度為單位,並需有計算過程。

問題 1.6 (5分)

將上題所得之 pNP 濃度變化換算出

pNP 的莫耳數變化。在答案卷上,所寫的答案需以每 ml 每分鐘的 1 倍"1X"濃度的酶溶液反應下為單位,並需有計算過程。

問題 1.6 (5分)

將上題所得之 pNP 濃度變化換算出 pNP 的莫耳數變化。在答案卷上,所寫的答案需以每 ml 每分鐘的 1 倍"1X"濃度的酶溶液反應下為單位,並需有計算過程。

問題 1.7 (5分)

計算最初所提供的 4ml 之 1 倍"1X" 酶溶液的總活性(單位為 mol per min;每 分鐘多少莫耳)。

第二部分 蛋白質測定(30分)

蛋白質濃度的測定常藉由使用標準蛋白質(例如:小牛血清蛋白(BSA))來進行。在第二部分中,你將利用 Bradford 法來測定,一個與 BSA 相等濃度的 1 倍 "1X"酶溶液的蛋白質的含量。此法係藉著染劑 Coommassie Brilliant Blue 與蛋白質結合時,Coommassie Brilliant Blue 染劑在595 nm 光源下,其吸光度的增加,以進行蛋白質濃度的定量。

利用 3% NaCl 溶液稀釋濃縮的 BSA 溶液($0.4 \text{ mg protein ml}^{-1}$),造成四種不同濃度的序列稀釋之 BSA 溶液(分別為 0.4, 0.2, 0.1, and $0.05 \text{ mg protein ml}^{-1}$)。此 BSA 序列稀釋溶液及其第 1 部分中所用的 0.1 倍"0.1X"酶溶液,皆以相同的 Coommassie Brilliant Blue 染劑處理。這些樣本在 595 nm 的吸光度(OD_{595})之測量值記錄如下表中。

Sample	[BSA]	OD ₅₉₅
	$(mg \cdot ml^{-l})$	
	0.05	0.470
	0.1	0.543
	0.2	0.661
	0.4	0.921
0.1x enzyme solution	0.580	

吸光值是指測定某種物質透光的程 度,或懸浮溶液中的顆粒之吸光程度。

問題 2.1 (10分)

將測量 OD₅₉₅ 所得的數據結果對應於 BSA 的濃度,在答案卷所提供的方格紙上 進行繪圖,並取其最接近的直線表示其趨 勢。

問題 2.2 (10分)

從圖中來估算 0.1 倍"0.1X"酶溶液之蛋白質濃度,並由此換算出 1 倍"1X"酶溶液之蛋白質濃度。

問題 2.3 (10分)

計算 1 倍"1X"酶溶液之活性(每 mg 蛋白質每分鐘的活性),在答案卷上,你的作答必須有計算過程,及以每 mg 蛋白質每分鐘的活性為單位(per min per mg protein)。

實驗三:遺傳學

總分:98分

總操作時間:90分鐘

第一部分 突變果蠅的外表型觀察 (9分)

【材料與器材】

- ▶ 培養皿(1)-(4)內有活果蠅 1 組
- ▶ 鏡座放大鏡(放大鏡)2檯

【簡介】

果蠅是遺傳上常用的材料,培養皿(1) 內有野生型果蠅,培養皿(2)-(4)內則有 不同突變型的果蠅。用放大鏡小心觀察但 不可打開培養皿的上蓋,可調整放大鏡架 的高度及角度以便觀察。

問題 1.1 (9分)

每種突變型果蠅的哪一種性狀與野 生型不同?由下列選項中選出突變型表現 出的性狀特徵。

- A. 眼睛顏色
- B. 眼睛形狀
- C. 翅形狀
- D. 剛毛長度
- E. 觸角形狀
- F. 剛毛形狀
- G. 腿形狀
- H. 吻部形狀
- I. 身體顏色
- J. 腹部長度

第二部分 白眼突變的遺傳(35分)

【材料與設備】

- ▶ 1.5 ml 試管標示(5a)及(5b)、(6a)及(6b)、(7),內有被麻醉的果蠅 1 組
- ▶ 空的培養皿 5個
- ▶ 白色板(置於培養皿下方,為方便觀察用)1個

- ▶ 鑷子2支
- ▶ 鏡座放大鏡(工作1中用的)1 檯
- ▶ 1.5 ml 試管架 1 支

【簡介】

野生型果蠅(WT)為紅眼,突變型果蠅(w)具有白眼, w 為位於 X 染色體上的隱性突變。(5a)及(5b)、(6a)及(6b)分別裝有由二不同雜交所得之雄蠅及雌蠅;第(7)管裝有另一雜交所得的雄與雌蠅。注意果蠅的雌雄可用腹部背面色帶的型式來區別。

Female

Male

問題 2.1 (8分)

將試管(5a) 及(5b)中的果蠅移到不同 的培養皿中,用放大鏡觀察,檢查其性別 及眼睛顏色,在答案卷之表格中記錄果蠅 的數目,包括 0 也要記在表中。

問題 2.2 (8分)

將試管(6a) 及(6b)中的果蠅移到不同 的培養皿中,用放大鏡觀察,檢查其性別 及眼睛顏色,將果蠅的數目分別記錄在答 案卷表格中,包括 0 也要記在表中。

問題 2.3 (8分)

將試管(7)中的果蠅移到不同的培養 皿中,用放大鏡觀察,檢查其性別及眼睛 顏色,將果蠅的數目分別記錄在表格中, 包括 0 也要記在表中。

問題 2.6 (9分)

下列何種組合的配對會產生試管 (5a) 及 (5b)、(6a) 及(6b)、(7)之果蠅,選擇所有可能情況並填入字母代號。

- A. 同基因合子紅眼雌蠅與半基因合子 紅眼雄蠅
- B. 同基因合子白眼雌蠅與半基因合子 白眼雄蠅
- C. 同基因合子紅眼雌蠅與半基因合子 白眼雄蠅
- D. 同基因合子白眼雌蠅與半基因合子 紅眼雄蠅
- E. 異基因合子雌蠅與半基因合子紅眼 雄蠅
- F. 異基因合子雌蠅與半基因合子白眼 雄蠅

(待續)

轉載自:中華民國生物奧林匹亞委員會網站 National Biology Olympiad, Taiwan, R.O.C http://www.ibo.nsysu.edu.tw/