膠帶貼斯生電

李義評 1* 紀慶隆 2 張世欣 3 吳英正 4

¹國立雲林科技大學 產業精密機械研究所 ²臺中市龍海國民小學 ³國立彰化高級商業職業學校 ⁴國立雲林科技大學 機械工程系

壹、前言

在大自然中的力分為重力、電磁力、 核力、弱力四大類,在目前所接觸的力, 以電磁力為主。由於在膠帶發現有吸引頭 髮的情形,便運用指北針量測,指北針不 動,判斷為電力,並非磁力。經由研究將 檢測方法標準化,包括靜電感應、靜電強 弱、靜雷類型及絕緣性判斷。 诱明膠帶貼 撕會產生靜電,所帶的靜電類型大多為正 電,撕開速度對靜電強弱有顯著影響。膠 帶材質會影響靜電產生,膠帶本身絕緣特 性佳者,電荷不容易流動,靜電容易產生。 但膠帶本身絕緣特性不佳者,電荷容易流 動,靜電容易流失,會不帶電。基材會影 響膠帶靜電的產生,只有當使用高壓電作 業絕緣鞋做基材時,電荷不易流動,不會 有靜電產生。其他基材,皆有靜電產生。 從膠帶實驗讓我們得知,靜電除了「摩擦 生電 | 外,還有「貼撕生電」,呈現電荷守 恆的特性。

貳、研究動機

當我們上美勞課程時,同學撕下膠

帶,經過同學頭髮時,發現同學頭髮豎了 起來,引起了我的注意。不知是否跟用衣 服磨擦塑膠尺,此時塑膠尺產生靜電可以 吸起頭髮的原因是否相同。讓我們對於膠 帶及靜電產生的道理,感到非常好奇。

參、研究目的

我們想要研究怎麼做才會產生靜電? 有哪些因素會影響靜電的強弱和類型?

肆、實驗材料

實驗所用的膠帶如圖 1a 及圖 1b 所示。

圖 1a

圖 1b

^{*}為本文通訊作者

伍、檢驗方法

將此次有關的檢測方法陳述如下,包 括:靜電感應、靜電強弱、靜電類型、絕 緣性判斷。

一、靜電感應

任何物質進入電場後,會有偶極化現象,不論物質是否為絕緣體,都會使靜電瓶金箔張開角度變小,實驗步驟如圖2a~2d所示。

圖 2a、衛生紙

圖 2b、剪刀

圖 2c、奇異筆

圖 2d、塑膠尺

二、靜電強弱(判斷膠帶靜電強弱)

靜電強弱由距驗電盤多少公分時,金 箔張開角度會變化,實驗步驟如圖 3a~3b 所示。

圖 3a、以不帶電的物體測靜電感應距離, 測出大約為 6cm。

圖 3b、再將膠帶放在上方上下移動,觀察 金箔張開角度是否變化,以靜電感 應距離判斷靜電強弱。

三、靜電類型 (判斷帶正、負電)

要判斷膠帶所帶的靜電為正電、還是 負電,首先要找出標準帶正或負電物體, 老師提供一張表,顯示不同物質間摩擦所 產生的帶電性。由表中可得知(1)毛皮跟 塑膠棒摩擦,毛皮帶正電,塑膠棒帶負電。 (2) 絲綢顋觀釋榛摩擦 絲綢帶負電,朔

(2)絲綢跟塑膠棒摩擦,絲綢帶負電,塑 膠棒帶正電。先將毛皮跟塑膠棒摩擦,塑 膠棒帶負電。將帶負電塑膠棒靠近驗電瓶, 再來將運用感應接地起電(圖 4a~4d)法 進行判斷電極性。塑膠棒帶負電時進行感 應接地起電(圖 5a),當膠帶為帶正電時, 金箔片的開度會增加(圖 5b)、膠帶為帶 負電時,金箔片的開度會減少(圖 5c)。 實驗步驟如(圖 6a~6h)所示。

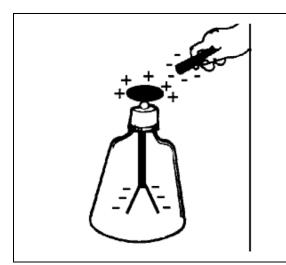


圖 4a: 帶電體靠近金屬產生靜電感應

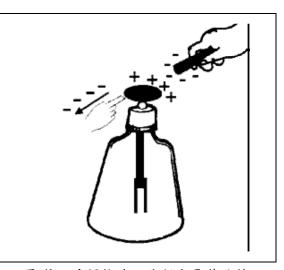


圖 4b:手觸接地,使部分電荷移轉

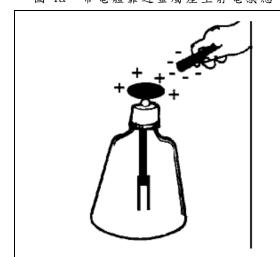


圖 4c: 手離開

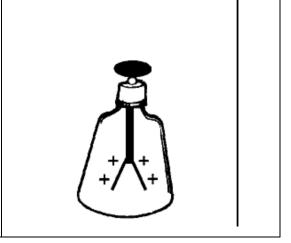


圖 4d: 帶電體移離,物體帶異性電

(資料來源:陳淑敏、黃義傑,2007)

圖 5a、利用感應接地起電法使金箔帶正電。

圖 5b、膠帶帶正(+)性電,箔片的張開 的角度會增加。

圖 5c、膠帶帶負 (一)性電,箔片的張開 圖 6c、以不帶電物質測感應距離並劃線。 的角度會減少。

圖 6a、用報紙摩擦壓克力棒產生靜電,報 紙帶負電(一),壓克力帶正電 (+) •

圖 6b、以衛生紙快速碰金屬盤,調整兩金 箔的夾角約90度。

圖 6d、以壓克力棒做為膠帶的附著基材, 在使用前,先檢查壓克力棒是否帶電,若帶電在微溼的抹布上清除電 荷。

圖 6e、撕下一層膠帶 (20~30cm 長), 貼 在壓克力棒,並消除電荷。

圖 6f、撕下另一層膠帶 (20~30cm 長), 貼在壓克力棒,並消除電荷。

圖 6g、撕下第一層,使金箔閉合,帶正電。

圖 6h、將第二層連壓克力,使金箔開,帶 負電。

四、絕緣性判斷

物體的絕緣性主要影響的是靜電產 生後停留在物體上的時間,絕緣性越好靜 電停留在物體的時間越長。規劃實驗為先 將正電荷儲存於金箔上張開角度 90 度。再 將基材接觸金屬盤 2 秒,若金箔慢慢合起, 代表絕緣性不佳。以珍珠板及絕緣鞋為例, 實驗步驟如(圖 7a~7b)所示。

圖 7a、珍珠板

圖 7b: 絕緣鞋

陸、實驗結果

一、實驗一:有沒有靜電產生

先將從整卷膠帶用濕抹布消除靜電 後,撕開 30cm 長膠帶,分將一條膠帶、 及整卷膠帶測量出靜電類型及靜電強弱。 實驗結果如表 1 所示。

表 1、有沒有靜電產生實驗結果

	一條膠	整卷膠 帶	消除 靜電
第一次 實驗	15cm 帶+電	8cm 帶-電	v
第二次 實驗	12cm 帶+電	7cm 帶-電	v
第三次 實驗	16cm 帶+電	8cm 帶-電	v

由實驗結果得知,再將膠帶撕下的時候,一條膠帶在三次實驗皆會得到帶正電, 整卷膠帶會得到帶負電。

二、實驗二:正(膠面)反(光滑面)面對靜電的影響

先將從整卷膠帶用濕抹布消除靜電 後,從整卷撕開 30cm 長膠帶,分將一條 膠帶的膠面及光滑面、及整卷膠帶測量出 靜電類型及靜電強弱。實驗結果如表 2 所 示。

表 2、正 (膠面) 反 (光滑面) 面對靜電 的影響實驗結果

	光滑面	膠面	整卷	消除靜電
第一次 實驗	15cm 帶+電	15cm 帶+電	8cm 帶-電	`
第二次 實驗	12cm 帶+電	12cm 帶+電	7cm 帶-電	~
第三次 實驗	16cm 帶+電	16cm 帶+電	8cm 帶-電	~

由實驗結果得知,膠帶兩面帶電類型相同是正電,而靜電強弱也一樣。表示出正(膠面)反(光滑面)面對靜電的沒有影響。因膠面在實驗時容易黏住,所以後面實驗用光滑面進行實驗。

三、實驗三:不同寬度的膠帶對靜 電的影響

用不同寬度(寬度 4.8cm 及 2.4cm)的 鹿頭牌透明膠帶,將膠帶撕開後,分將一條膠帶、及整卷膠帶測量出靜電類型及靜電強弱。實驗結果如表 3 所示。

表 3、不同寬度的膠帶對靜電的影響實驗 結果

	寬度 4.8cm		寬度 2.4cm		
	一條 膠帶	整卷 膠帶	一條 膠帶		消除 靜電
第一次 實驗		8cm 帶-電	15cm 帶+電	8cm 帶-電	•
第二次 實驗		7cm 帶-電	12cm 帶+電	7cm 帶-電	•
第三次 實驗		7cm 帶-電	16cm 帶+電	8cm 帶-電	~

由結果得知,但寬度改變不會影響靜電類型及靜電強弱,所以後面用寬度 2.4cm 進行實驗。

四、實驗四:不同材質、品牌膠帶 對靜電的影響

收集不同材質、品牌膠帶,分別做絕

緣性檢測,再從整卷膠帶撕下一條,分別 測量一條及整卷靜電。實驗結果如表 4 所 示。由表 4 可得知,實驗結果有四種情形。 第一類較特殊,為鹿頭牌 2.4cm,一條膠 帶時穩定帶正電,整卷膠帶有時不帶電, 有時帶負電。第二類為一條膠帶帶正電、 整卷膠帶無帶電。共有 3M stotch 隱形膠 帶等三種。第三類和第二類相反,為一條 膠帶帶負電、整卷膠帶無帶電。有特力屋 PVC 絕緣膠帶帶等二種。第四類為兩層皆 不帶電,有特力屋牛皮紙膠帶等四種。綜 合測試結果,殘餘在整卷膠帶的電力,通 常很微弱或不易測得,由此判斷,靜電強 弱可能與帶電體的形狀有關。另外,從實 驗結果得知,膠帶絕緣特性和膠帶有無帶 電沒有絕對關係。

表 4、不同材質、品牌膠帶對靜電的影響實驗結果

	絕緣	靜電感應		1	2	3
鹿頭牌 2.4cm	好	3cm	一條	17cm,帶+電	18cm,帶+電	19cm,帶+電
庇頭牌 2.40III	紅	30111	整卷	無	7cm,帶-電	11cm,帶-電
3M stotch	好	3cm	一條	14cm,帶+電	16cm,帶+電	22cm,帶+電
隱形膠帶	ΣJ	Jem	整卷	無	無	無
特力屋	好	6cm	一條	20cm,帶+電	25cm,帶+電	23cm,帶+電
PVC 棕色膠帶	V1	OCIII	整卷	無	無	無
特力屋	好	4cm	一條	17cm,帶+電	18cm,帶+電	18cm,帶+電
OPP 膠帶	V1	40111	整卷	無	無	無
特力屋	好	4cm	一條		18cm,帶-電	18cm,帶-電
PVC 絕緣膠帶	71	40111	整卷	無	無	無
3M	好	6cm			9cm,帶-電	
超強大力膠布	71	oem	整卷	無	無	無
特力屋	不好	4cm	一條	無	無	無
牛皮紙膠帶	1 70	10111	整卷	無	無	無
特力屋	不好	4cm	一條	無	無	無
防水布膠帶	1 79	.0111	整卷	無	無	無
特力屋	不好	4cm	一條	無	無	無
鋁箔膠帶	1 7/1	10111	整卷	無	無	無
Stotch blue	不好	3cm	一條	無	無	無
遮蔽紙膠帶	1 7/1	50111	整卷	無	無	無

五、實驗五:帶電膠帶上的電荷流動性測量

先將從整卷膠帶用濕抹布消除靜電 後,徒手從整卷撕開 30cm 長膠帶,方法 如上,撕下後,一分鐘後再進行測量,實 驗結果如表 5 所示。

表 5、帶電膠帶上的電荷流動性測量實驗 結果

第一次實驗	14cm,帶+電
第二次實驗	14cm,帶+電
第三次實驗	13cm,帶+電

由表 5 可知,實驗三次,將膠帶撕下後等 待 1 分鐘後再進行測量,發現膠帶上的靜 電依然存在,表示電荷流動性不佳,絕緣 性很好。

六、實驗六:膠帶撕開速度對靜電 的影響

膠帶撕開時,會有靜電產生,但撕開速度快慢是否對靜電產生有影響,同樣撕下 30cm 的膠帶,第一種慢慢撕下,總共時間 5 秒。,第二種快速撕下,總共時間 1 秒。實驗結果如表 6 所示。

表 6、膠帶撕開速度對靜電的影響實驗結果

	第一次實驗	第二次實驗	第三次實驗
5 F/L	12cm,	13cm,	11cm ,
5 秒	帶+電	帶+電	帶+電
1 手小	14cm ,	17cm ,	14cm ,
1 秒	帶+電	帶+電	帶+電

由表 6 可知,撕開速度越快,所帶靜電愈 多。

七、實驗七:兩膠帶撕開對靜電的 影響

找尋絕緣性良好的基底,經絕緣性測量,選擇壓克力棒做為基底,先從膠帶撕20cm長膠帶貼在壓克力棒底材上,用濕抹布消除靜電,用驗電瓶確認。再從膠帶撕20cm長膠帶疊貼在第一張膠帶上。再用濕抹布消除靜電,並用風吹乾。實驗結果如表7所示。

表 7、兩膠帶撕開對靜電的影響實驗結果

	1	2	3
* 豆椒 米	13cm ,	10cm,	10cm,
第一層膠帶	帶-電	帶-電	帶-電
第二層膠帶+	15cm ,	8cm,	10cm ,
壓克力棒	帶+電	帶+電	帶+電

由表7可知,當用兩膠帶疊貼時後再撕開, 第一層膠帶皆帶負電,第二層膠帶+壓克 力棒帶正電。

八、實驗八:不同基材對靜電產生的影響

將基材做改變,只用一層膠帶貼上基 材後撕開,將實驗結果彙整如表8所示。 由表8可得知,實驗結果有二種情形。第 一種膠帶帶負電,共有珍珠板等七種。第 二種膠帶不帶電。只有絕緣鞋。不同基材 對靜電產生有影響。絕緣特性對膠帶貼撕 靜電產生無直接關係。因不論絕緣性好或 不好, 皆可能有靜電產生。

柒、討論與結論

- 一、經由研究將檢測方法標準化,包括(1) 靜電感應。(2)靜電強弱。(3)靜電 類型。(4)絕緣性判斷。
- 二、由實驗結果得知,透明膠帶貼撕會產 生靜電,所帶的靜電類型皆為正電, 撕開速度對靜電強弱有顯著影響。
- 三、膠帶材質會影響靜電產生,膠帶本身 絕緣特性佳,電荷不容易流動。但膠 帶本身絕緣特性不佳,電荷容易流動, 靜電容易流失。
- 四、基材會影響膠帶靜電的產生,只有當

使用高壓電作業絕緣鞋做基材時,電 荷不易流動,不會有靜電產生。其他 基材,皆有靜電產生。

參考文獻

- 維基百科 http://zh.wikipedia.org/wiki/%E 9%9D%9C%E9%9B%BB%E5%AD %B8
- 開啟密室的小縫~靜電理論不完善處之探 討與現象揭示,陳淑敏、黃義傑, 全國第四十八屆中小學科展 國中 組 理化科。
- 逢甲大學林泰生教授 http://knight.fcu.edu. tw/~tslin/course uint.htm
- Hecht, Physics; Serway, Physics for scientists and engineers
- Charging of Adhesive Tapes on Peeling http://sciencelinks.jp/j-east/article/2 00706/000020070607A0223458.php

表 8、不同基材對靜電產生的影響實驗結果

基材	絕緣性檢測	1	2	3
珍珠板	好	10cm,帶-電	9cm,帶-電	9cm,帶-電
玻璃	不好	7cm,帶-電	8cm,帶-電	7cm,帶-電
不銹鋼門	不好	12cm,帶-電	15cm,帶一電	7cm,帶-電
磨石子窗台	不好	17cm,帶-電	19cm,帶-電	16cm,帶-電
塑膠桌墊	不好	14cm,帶-電	20cm,帶-電	22cm,帶-電
椅子	不好	15cm,帶-電	15cm,帶一電	17cm,帶-電
壓克力棒	好	12cm,帶-電	16cm,帶-電	18cm,帶-電
絕緣鞋	好	無	無	無