九二一震災後一年來的回顧

何耀坤 台南市光華女中

九二一震災已過一年多,本人在本刊第227期之「探討大地震的預測對策」一文中曾建議政府以每年九月二十一日定為「台灣防災日」。欣見行政院於去年九月十三日的院會中,已決議今後每年的九月二十一日將訂定為「災害防救日」。震災既是一種自然科學現象,同時也是社會科學現象。九二一震災在付出甚多生命和社會資源後,我們有責任將這教訓及經驗告訴後代世人。目前在市面有許多有關九二一震災的出版物,另有政府生物調查報告。本文是根據這些資料及實地考察情形,從社會、教育及科學三方面做一回顧,在分析其要點,探討其因果後並提出若干建議。

一、九二一震災的災情和特徵

(一)災情統計

這次全台灣地震災害於地震當天即去年 九月二十一日 23 時止統計如表一,最後累積 死亡人數超過 2300 人,受傷人數約一萬人, 失去住家人數達十萬人以上,全部的災害損 失達 1800 億元以上,現在災區重建進行中, 也完成一部分。

表一 九二一震災一覽表

項目	地震	死亡	受傷	失蹤	房屋
地區	震度	人數	人數	人數	倒塌
台北市	4級	4	273	0	19

台中市	6級	92	26	13	45
嘉義市	5 級	0	10	0	1
台南市	5 級	0	0	0	0
台北縣	4級	13	132	1	9
桃園縣	4級	2	3	0	4
新竹縣	5 級	0	4	0	6
苗栗縣	3 級	6	142	0	361
南投縣	6級	620	1055	119	1394
台中縣	6級	860	1291	0	255
彰化縣	6級	13	344	0	11
雲林縣	6級	32	189	12	25
嘉義縣	5 級	1	3	6	12
台南縣	5 級	1	0	0	0
宜蘭縣	4級	0	7	0	5
花蓮縣	3 級	0	0	0	0
高雄縣	4級	0	0	0	0
新竹市	4級	2	1	0	5
台東縣	4級	0	0	0	0
總數	1712	400	5 2	5 219	

註:統計時間截至9月21日23時止

記者黃泊川製表

這次震災在台灣近百年來看,是傷亡較 嚴重的地震之一,如表二。

表二 台灣近百年來傷亡較多的地震

時間	震央	規模	死亡	受傷	房屋倒
(1) 1904.11.6	嘉義附近	6.3	145	158	3840
(2) 1906.3.17	嘉義民雄	7.1	1258	2385	20987
(3) 1917.1.5	埔里附近	5.8	54	85	755
(4) 1935.4.21	苗栗關刀山	7.1	3276	12053	54688
(5) 1935.7.17	後龍後龍溪□	6.2	44	391	7621

(6) 1941.12.17	嘉義市中埔	7.1	358	733	15606
(7) 1946.12.5	台南新化	6.3	74	482	4038
(8) 1951.10.22	花蓮東南東	7.3	68	856	2382
(9) 1951.11.25	台東北方(成功)	7.3	17	326	1598
(10) 1964.1.18	台南白河	6.5	106	653	40965
(11) 1999.9.21	南投集集	7.3	1712	4005	2152

(中央氣象局)

(二)九二一震災的特徵

自然災害可分為直接災害和間接災害, 例如因為房屋倒塌導致人被壓死,及引起火 災是直接災害,而在災區發生傳染病或悲傷 自殺是間接災害。本次震災有許多特徵:死 者 99% 是在住宅內被壓死,是第一特徵;無 論直接災害或間接災害都甚大,是第二特 徵,尤其災民的心理創傷難估計。死於火災 者甚少,是第三特徵,像1923年日本東京大 地震中因為火災的死亡者人數就占70%。此 次震災中死亡者大部分是在住宅中,因為大 型家具倒下而被壓死,因此這次震災也可說 是住宅災害或家具災害,這是第四特徵。

二、九二一震災震出的問題

(一)對地震的應付準備工作不足,行政 配合不良。

都市建築物的耐震工學技術最近有進 步,但使用地震儀的近代地震學研究歷史 淺,對大地震的分析研究不足,如土壤液化 現象,因而公寓大樓傾倒是以前在台灣地區 未曾有。20世紀後半期在台灣少有大地震, 一般預測新世紀可能有大地震襲擊都市。從 台灣的活斷層分布來看,九二一大地震應可 預測,但是社會一般人缺少現實的迫切認 知。因為現在對地震觀測組織和預測能力, 去日月引力,氣壓,海水溫度等因素。

在科技上有限, 對地震防災在行政能力上也 有限。

(二)地震相關的測量不充分

(1)水準測量

我們在街上偶而可看到測量人員,從兩 地點(離30 40公尺)插3公尺標干,可將 兩地點的高度差(可測到 1mm 程度)。若反 覆這種水準測量、可發現土地高度之變化。 因為大地震前後近震源地方,必有顯著隆起 或凹陷情形,這是地震預測上重要工作。

(2)邊長測量

這是使用 Diometer 測兩地點間距離,從 母站發射雷射光,在子站反射回母站,可測 數十公里內的距離至 mm 精度。其基準點連 結成三角點,其三角網路普遍到全國。從三 角點測量可發現地震時,土地也有水平移 動。

(3)測重力變化

地下物質移動時,其重力之大小也會變 化,用重力計可測出 1/1 億之變化。

(4)測地磁變化

利用量子工學技術,用磁力計可發現 1/ 1000 萬之變化。

(5)測土地的傾斜和伸縮

用水管傾斜計,在相離20 40公尺處放 兩個壺,將玻璃細管連通注滿水,若土地發 生傾斜時,一方壺水位會上升,他方水位會 下降。

(6)海水面的變化

海拔(平均海水面)變化時,證明該土地 高度也發生變化,可用檢潮儀測之,但要除

(7)井水位變化

據說這次地震發生一個月前,震災區的 井水位下降,發生地震時下降達七公尺。

以上是大地震預測要做的工作,這次震災的發生,無論政府或民間方面缺乏危機意識,預測工作缺積極。這次地震由建物災害情形看來,於局部有很大破壞力,到底其破壞力由何來?值得注意的是地震動和地盤及地形的相應現象,是所謂「共振增幅現象」,尤其高樓建物11樓至14樓的多發生。這次大地震也形成所謂「震災帶」問題,是分析地震帶、地盤及建物災害上重要的考慮因素。

(三)以社會防災能力看九二一震災

這次震災的間接災害大,證明災後的對應工作不十分周全。因為災區範圍大,所以行政對應能力不周到。而且救災器材設備及人員缺乏,事後的資源分配不適當。總而言之,缺乏社會的危機管理系統,幾乎是在沒有防備下,發生了災害。這次有許多從遠方來的志工協助,證明本地的自治體制軟弱並缺乏自覺性。

(四)住宅內的震災死亡者多

這次震災發生在凌晨,當時住家的用火 比率很低,加上當季的風勢弱,因此火災 少,社會上的缺失沒有全部出現。住宅內死 者多,原因除了住宅老舊外,震幅大,震動 時間較長約30秒。以現階段來說,對震災的 評估來達到客觀成熟階段,要公平來評估也 許要等待災後重建完成後,及其他都市也完 成防災準備以後的事。我認為要真正了解這 次震災是怎樣,恐怕要等到下次的大地震來回答。另外過去對規模 M7 以上的強烈地震的紀錄不詳細,資料又缺乏也是原因之一。

(五)公共建設的缺失

如公共建設所使用的鐵筋不足,熔接不良,水泥連接不良情形大量出現。

(六)屬於科學界方面的問題

這次震災後雖然在學術界方面提出許多 觀測報告,或熱烈討論斷層的活動性及活斷 層分布帶,並公布略圖。但是有關大地震的 預知相關的科學,減少災害的科學研究及防 災工作組織的討論仍然十分缺乏。

三、科學界對預防震災的責任

於九二一震災,在過去一般人認為最安全的大樓及橋樑倒壞,令耐震工程方面的研究者有很大衝擊和反省。在大地震發生時,大眾方面必會質疑的問題是地震科學方面,在危險發生之前為何不能提出警訊。所謂「危險」包括地震發生的危險,及大災害發生的危險性(如由政策上的錯誤或缺陷所引起的危險性)。在這種情形時,地震科學當局應以專門知識,向社會報告解釋,是他們的責任。

地震發生的可能性之判斷,要根據測地 (測地殼歪曲所蓄積程度)的證據;地質學上 的證據,如斷層的危險度估計;及地震學上 的證據,如群發性地震發生的地域,其中最 重要的是測地資料。要向社會報告危險將要 來臨時,其時間的幅度若太長,也許其信息 就缺乏有效性。若要建議政府機關來實行應付措施,也要事先提出可行性對策。

預防震災是地震科學的重要目的,現在 地震學研究中,對地震發生後的研究很進 步,可是對地震發生前的研究仍在未成熟階 段。地震的基礎科學中有地殼物理,包括彈 性,非彈性,非線形性、電磁性及化學等。 一般對基礎科學研究的實用價值難評價,其 研究規模和程度由研究者所所決定。有不少 在20年前的有關地震基礎研究、現在成為可 實際應用。所以基礎科學和應用科學之不 同,只是時間上的問題。科學研究的成果無 論其內容何等深奧,究竟於將來有一天可能 會被用到。

過去台灣科學界對災害的預測,如何減 少災害的研究,以及在防災組織方面不大充 實。科學家對社會方面的發言,一般令人感 覺消極。例如行政措施有錯誤時,科學家應 更積極發言批判。如在九二一震災發生後完 全由政治主導,科學家能發言餘地有限。

對地震的預測方面,現在地震學家都承認地震的短期預測之困難,長期預測有大的不確定性,可是在防災政策上要假定台灣任何地方都可能發生地震。如果發現有地震的前驅現象時,提出短期預報的話,其預報會命中的可能性就大。如果預測不中時,恐怕對社會會產生混亂及經濟損害,對近代都市生活不見得有好處。所以地震防災方面的行政判斷仍是十分重要,不可完全靠科學方面來決定。

台中縣和南投縣從地質和地震學知識看來,這裡是地殼歪曲極端的集中地帶,但是

過去政府及民間的地震危機意識很低。震災 之前一般人對大自然的畏懼感消失,對這點 在地球科學方面人士也應負部分責任。

四、活斷層與震災

九二一震災相關的活斷層,如車籠埔斷層(南自斗六鎮桶頭橋,北至苗栗卓蘭)是一級活斷層(又稱全新世活斷層,是在一萬年前以來曾發生錯移的斷層)。車籠埔斷層接觸口斷層,向北接三義斷層,接近人口密集區,災害大。台灣西部活斷層引發的地震,都屬於極淺層地震,地表震度大。台灣東部中等地震至強震多,屬於淺源地震,但震央多在外海。

所謂活斷層是大地震時, 地表地震斷層 在最近地質時代曾發生或多次發生。斷層所 引起的地形和地層的錯移呈線狀。因此有明 顯活斷層時,該地區未來發生大地震可能性 就高。總而言之,活斷層是將來引起大地震 可能性高的地殼淺部的斷層,具有反覆活動 的記錄。斷層運動反覆結果地層和地表的錯 移會變大,而形成獨特的「斷層變位地形」。 這種變位地形累積形成山地,平原和盆地間 的地形境界,由此可知有許多活斷層在我們 的身邊。活斷層活動會引起規模7以上的地 震,所以台灣的大地震以活斷層為主要因 素。因此策劃台灣地震防災辦法上,必需要 正確的活斷層資料,選出將來活動可能性較 高的斷層,以重點作防災對策。例如分析台 灣各活動斷層的活動經歷,如其活動時間的 間隔,最後一次活動時間,每次的變位量,

(下轉第69頁)