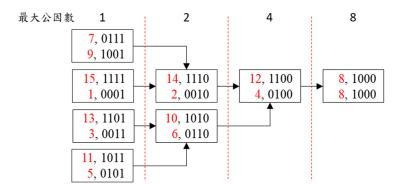
動態穩定新篇章:一堆 vs. 黑洞(上)

宋侑穎 陳星穎 蘇柏奇 游淑媛 苗栗縣立興華高級中學

陳奕均[1]探討將兩堆石頭移成數量相等的充要條件及移動次數,其移動規則為:「若x>y,則 $(x,y)\to(x-y,2y)$ 」。林建銘等人[2]將之推廣到更多堆的情形,規定從中任取兩堆移動,即:「若x>y>z,則 $(x,y,z)\to(x-y,2y,z)$ or(x-z,y,2z)or(x,y-z,2z)」。上述兩項研究皆規定數量相等的兩堆無法移動,許雅晴等人[3]則規定數量相等仍可互移,即:「若 $x\geq y$,則 $(x,y)\to(x-y,2y)$ 。特例: $(x,x)\to(0,2x)$ 」,因而產生堆數減少的結果。本研究改變移動規則,將移動數量改為兩堆的最大公因數且數量相等仍可移動,發現除了僅剩一堆的狀態外,還有進入後便無法脫離的黑洞狀態。另外,n 堆黑洞狀態相當於「給定 n 個數滿足任兩數之差等於兩數的最大公因數」,本文所得方法能推廣到求更多堆的狀況,並給出此問題的解法。



不難看出,當 $x+y=2^k$ 且 $\gcd(x,y)=2^m$ 時,形成穩定狀態的過程即為最大公因數由 2^m 變成 2^{k-1} 的過程,因每次移動最大公因數變成移動前的兩倍,故需經 k-1-m 次形成穩定狀態。陳奕均所得結果如下:

文獻結論 1 (陳奕均, 2015)

若 $x+y=p\times 2k$ (p 為奇數),且 x, y 的最大公因數為 $r\times 2m$ (r 為奇數),則: 1. p=r 時,(x,y) 形成穩定狀態的次數為 k-1-m 次。

2. p ≠ r 時, (x, y)無法形成穩定狀態。

上兩例中,每次移動後最大公因數變成移動前的 2 倍。由最大公因數的變化似乎可以 得到最少移動次數,但若應移動的兩堆數量相等而無法互移,便會產生例外的狀況,例如 (10,10,4)移動後最大公因數不變,須經 3 次移動才成為穩定狀態:

林建銘等人因上述例外而未能得到形成穩定狀態的移動次數,對此,許雅晴等人[3] 進而規定兩堆數量相等時,仍可互移,移動後其中一堆數量變為 0,產生堆數減少的結果, 進而移動成僅有一堆的狀態(稱為「一堆狀態」),如:

$$(4,2,2)$$
 移動第2,3堆 $(4,4,0)$ 移動第1,2堆 $(8,0,0)$ \circ

他們解決林建銘等人的例外狀況,進而得三堆形成一堆狀態的條件與最少移動次數, 如文獻結論 3-1。

此外,許雅晴等人[3]提供一種方法,可使任意 (x_1,x_2,x_3) 逐步減少「兩堆之差」直至 0,即堆數變成兩堆: (x_1,x_2,x_3) → ... → (x,x,y) → (0,2x,y)。不失一般性,令 $x_1 < x_2 < x_3$,他們將由第二堆移動到第一堆的方式記為 f,即 (x_1,x_2,x_3) — f → $(2x_1,x_2-x_1,x_3)$;由第三堆移動到第一堆的方式記為 g,即 (x_1,x_2,x_3) — f → $(2x_1,x_2,x_3-x_1)$ 。 先將 f 次 是 以 f 为 是 以 f 的 是 以 f 的 是 是 f 的 是 是 f 的 是 是 f 的 是 是 f 的 是 是 f 的 是 f

顯然,當 b=0 時,經 r+1 次移動即形成一堆狀態。例如(9,108,136),由 $108=12\times9+0$ 且 $12=2^3+2^2$,即得 $(r,r_1)=(3,2)$,即先經過 3 次移動得到前兩堆之差為 0 的狀態,且第 $r_1+1=3$ 次的移動為 f,其移動過程為:

$$(9,108,136) \xrightarrow{g} (18,108,127) \xrightarrow{g} (36,108,109) \xrightarrow{f} (72,72,109)$$

再經 1 次移動 (72,72,109) \xrightarrow{f} (144,0,109) 形成兩堆狀態。

而當 $b \neq 0$ 時,反覆多次,即可逐步減少「兩堆之差」直至 0。例如:(5,66,136),由 $66 = 13 \times 5 + 1$ 且 $13 = 2^3 + 2^2 + 2^0$,即得 $(r,r_1,r_2) = (3,2,0)$,即經過三次移動得到前兩堆之 差為餘數 1 且第 $r_1 + 1 = 3$ 、 $r_2 + 1 = 1$ 次的移動為 f ,其移動過程為:

$$(5,66,136) \xrightarrow{f} (10,61,136) \xrightarrow{g} (20,61,126) \xrightarrow{f} (40,41,136) \circ$$

此時,前兩堆之差減少為 1,再經一次移動, (40,41,136) \xrightarrow{f} (80,1,136),調整為 (1,80,136)。 再由 $80=80\times1+0$ 且 $80=2^6+2^4$,即得 $(r,r_1)=(6,4)$,即經過六次移動得到前兩堆之差為餘數 0 且第 $r_1+1=5$ 次的移動為 f,其移動過程為:

$$(1,80,136) \xrightarrow{g} (2,80,135) \xrightarrow{g} (4,80,133) \xrightarrow{g} (8,80,129) \xrightarrow{g}$$

$$(16,80,121) \xrightarrow{f} (32,64,121) \xrightarrow{g} (64,64,89)$$

再經 1 次移動, (64,64,89) \longrightarrow (128,0,89) 形成兩堆狀態。

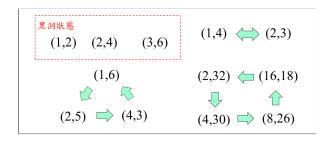
更多堆時,從中任選三堆,必能使其中一堆為 0,反覆多次,則能形成兩堆狀態。是 否能進一步形成一堆狀態?取決於 p 與 r 是否相等(不難得到文獻結論 3-1 所得三堆形成 一堆狀態的條件與次數也適用於兩堆的情形),如文獻結論 3-2。

文獻結論 3-2 (許雅晴等人, 2017)

若
$$\sum_{i=1}^{n} x_i = p \times 2^k$$
, $gcd(x_1, x_2, ..., x_n) = r \times 2^m$,則

- 1. 若 p = r, 則 $(x_1, x_2, ..., x_n)$ 能形成一堆狀態。
- 2. 若 $p \neq r$, 則 $(x_1, x_2, ..., x_n)$ 能形成兩堆狀態。

陳奕均[1]、林建銘等人[2]及許雅晴等人[3]皆僅關注形成穩定狀態或一堆狀態的條件 與次數,我們發現未進入穩定、一堆狀態時,會進入循環,例如: $(1,33) \rightarrow (2,32) \rightarrow (4,30)$ $\rightarrow (8,26) \rightarrow (16,18)$,數量差越來越小,接著數量大小互換 $(16,18) \rightarrow (32,2)$,因此前已出現 過(32,2),故進入循環。有時大小互換多次才進入循環,如: $(1,12) \rightarrow (2,11) \rightarrow (4,9) \rightarrow$ $(8,5) \rightarrow (3,10) \rightarrow (6,7) \rightarrow (12,1)$;或全部數對都在循環中: $(1,18) \rightarrow (2,17) \rightarrow (4,15) \rightarrow (8,11)$ $\rightarrow (16,3) \rightarrow (13,6) \rightarrow (7,12) \rightarrow (14,5) \rightarrow (9,10) \rightarrow (18,1)$ 。圖示部分循環如下,其中,(1,2)、(2,4)、(3,6)為單個的循環,我們將之稱為「黑洞狀態」。



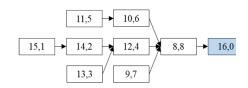
本文改變上述三項研究移動的規則,將移動數量由「較少一堆的個數」改為「兩堆的最大公因數」,發現:「所有的數對進入一堆狀態或黑洞狀態」。為何我們的移動法不會進入多個數對的循環呢?若 $\gcd(x,y)=d$ 且x>y,設x=dm,y=dn, $\gcd(m,n)=1$,不難得知(x,y)的移動相當於(m,n)的移動。討論(m,n)的移動如下:

- (1) 當 m-n > 2 時, $(m,n) \to (m-1,n+1)$,兩堆數量差減少 2;
- (2) 當 m-n=2 時, $(n+2,n) \to (n+1,n+1) \to (0,2n+2)$ 進入一堆狀態;

(3) 當 m-n=1時, $(n+1,n) \to (n,n+1)$ 大小互換,進入黑洞狀態。 綜上所述,我們的移動方法大小互換時即進入黑洞狀態,不會有多個循環的現象。 若 $s=x+y=p\times 2^k$,p 為奇數,初步分三類討論:

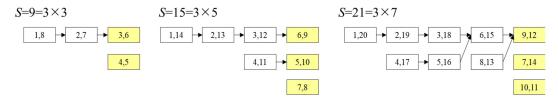
1. 當 p=1 且 k>0 時:所有的數對都進入一堆狀態,如 s=16,詳如第二節之探討。

S = 16



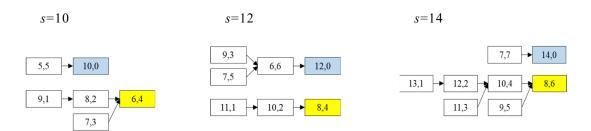
2. 當 p > 1 且 k = 0 時:

當和為奇數時,不可能形成穩定狀態(穩定狀態的兩堆和必為偶數),也就無 法形成一堆狀態;另一方面,我們的移動法不會進入多個數對的循環,故得所有 的數對都進入黑洞狀態,如 s=9,15,21,詳如第三節之探討。

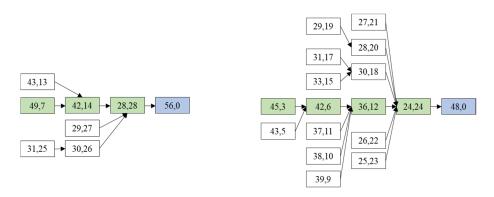


3. 當 p ≠ 1 且 k > 0 時:

所有數對進入一堆狀態或黑洞狀態,如s=10,12,14。

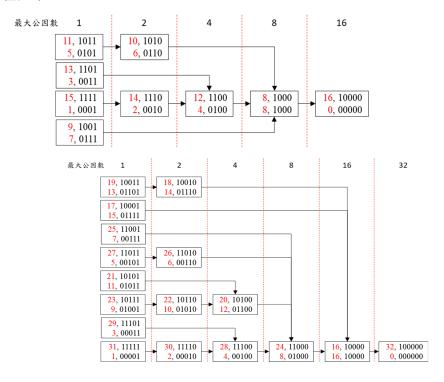


顯然,須先形成穩定狀態才能形成一堆狀態,而在形成穩定狀態的過程中,有些主要的狀態: $(s-p\times 2^i,p\times 2^i)$, $i=0\sim k-1$,若能移動到這些主要狀態,則能形成一堆狀態,反之,若未能進入這些主要狀態,則進入黑洞狀態。例如:和為 $56=7\times 2^3$ 時,有三個主要狀態(49,7)、(42,14)、(28,28);和為 $48=3\times 2^4$ 時,有四個主要狀態(45,3)、(42,6)、(36,12)、(24,24)。



貳、一堆狀態

本節探討一堆狀態,發現:若 $x+y=2^k$,所有數對都進入一堆狀態,如x+y=16,32的移動過程如下。



之前的移動方法,移動後的最大公因數必為移動前最大公因數的兩倍,進而依此得到移動次數;而我們的移動方法,則可能不止兩倍,例如:(18,14) \rightarrow (16,16) \cdot (17,15) \rightarrow (16,16) \cdot (25,7) \rightarrow (24,8) ... 等。我們發現:由較大數的二進位表法可得形成一堆狀態的移動次數!若 $x+y=2^k$, x>y, $\gcd(x,y)=2^m$ 且令 $x=\sum_{i=0}^k a_i \times 2^i$ 、 $y=\sum_{i=0}^k b_i \times 2^i$,則有:

$$\begin{cases} a_i + b_i = 0, & i = 0 \sim m - 1 \\ a_i + b_i = 2, & i = m \\ a_i + b_i = 1, & i = m + 1 \sim k - 2 \\ a_{k-1} = 1 \\ b_{k-1} = 0 \end{cases}$$

	2^k	2^{k-1}		2^m	2^{m-1}		20	
x	0	1	0或1	1	0		0	
у	0	0	0或1	1	0		0	
x + y	1	0		0	0		0	
$a_i + b_i$		1		2		0		

移動時, $x \to x - 2^m$,移動後,x 之二進位表示法僅有 a_m 由 1 變為 0,其它的 a_i , $i \neq m$ 皆不變,且每次移動皆是如此,故較大數的二進位表法中有幾個 1,就需移動幾次而形成一堆狀態,歸納以下結果:

若
$$x + y = 2^k$$
, $x > y$ 且 $x = \sum_{i=0}^k a_i \times 2^i$,

則形成一堆狀態的移動次數為 $\sum_{i=0}^{k} a_i$.

另外,較小數之二進位表示法影響移動後最大公因數的變化!若 $b_i = \begin{cases} 0, i = 0 \sim m - 1 \\ 1, i = m \sim m + n - 1 \end{cases}$ 移動後的最大公因數為 2^{m+n} 。如下: 0, i = m + n

		•••	2 ^{m+n}	2^{m+n-1}	•••	2^{m+1}	2"	2 ^{<i>m</i>-1}	•••	2°
移 動 前	X	0 或 1	1	0		0	1	0		0
	У	0 或 1	0	1		1	1	0		0
移動後	$x-2^m$	0 或 1	1	0		0	0	0		0
	$y+2^m$	0 或 1	1	0		0	0	0	0	0

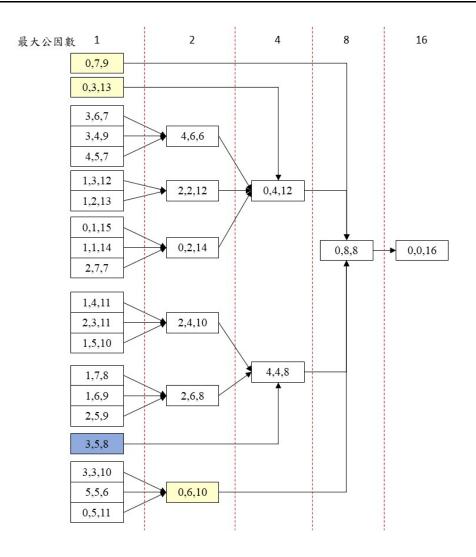
歸納如下:

接著討論三堆的情形,三堆中任取兩堆移動的方式有三種,例如:

$$(12,3,2) \begin{cases} \frac{8 \text{ } - 8 \text{ } + 8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,3 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,3 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{8 \text{ } + 1,3 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1}{1,2 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1,2 \text{ } + 1}{1,2 \text{ } + 1,3 \text{ } + 1} \\ - \frac{8 \text{ } + 1,2 \text{ } + 1,2 \text{ } + 1}{1,2 \text{ } + 1,2 \text{ } +$$

不論是陳奕均等人([1]、[2]、[3])或我們的移動法,在「逐步使二進位表法最低位值上的 1 變成 0」上有異曲同工之妙,因此,林建銘等人[2]所提供的移動方式(如文獻結論 2)也 適用於本研究,且依此法移動,形成一堆狀態所需的移動次數最少,例如:

當 $x+y+z=2^k$ 時,所有數對會進入一堆狀態,以 x+y+z=16 為例,所有數對形成一堆狀態的過程如下:



通常移動後的最大公因數會變成移動前的 2 倍,但若移動的兩堆之較小數的二進位 表法符合結論 2,則最大公因數可能變成不止 2 倍。例如:(3,5,8)僅經一次移動變成 (4,4,8),最大公因數由 1 變成 4 (如藍色標示),列出此移動前後的二進位表法如下:

許雅晴[3]等人所得三堆形成一堆狀態的過程中,每次移動後的最大公因數皆變成原來的兩倍,所以當三數的和為 2^k ,最大公因數為 2^m 時,經過k-m次移動會形成一堆狀態;而本研究之移動,在符合結論 2 的情況下,最大公因數可能由 2^m 變為 2^{m+n} ,故可能不需k-m次移動便能形成一堆狀態,得到以下結果:

結論 3: 三堆形成一堆狀態的次數

當三數的和為 2^k ,最大公因數為 2^m ,則形成一堆狀態的次數上限為k-m.

更多堆時,若和為 2^k ,根據林建銘等人所提供的移動規則,可經過若干次移動而使最大 公 因 數 變 為 2^k , 即 形 成 一 堆 狀 態 。 例 如 : 四 堆 $x_1+x_2+x_3+x_4=2^k$ 且 $\gcd(x_1,x_2,x_3,x_4)=2^m$ 時,可分成兩類如下,分別經過 $1\cdot 2$ 次移動(第一類移動 x_1,x_2 ;第二類從中任取兩堆移動,則變成第一類),可使最大公因數變為 2^n ,n>m。

	$2^{m+n}2^{m+1}$	2"	$2^{m-1}2^0$		$2^{m+n}2^{m+1}$	2 ^m	$2^{m-1}2^0$
x_1	0 或 1	1	0	x_1	0 或 1	1	0
x_2	0 或 1	1	0	x_2	0 或 1	1	0
x_3	0 或 1	0	0	x_3	0 或 1	1	0
x_4	0 或 1	0	0	x_4	0 或 1	1	0

得到以下結果:

結論 4: 多堆形成一堆狀態的條件

當
$$\sum_{i=0}^{n} x_{i} = 2^{k}$$
 ,則 $(x_{1}, x_{2}, ..., x_{n})$ 皆能形成一堆狀態。