中學生通訊解題第 160-161 期題目參考解答及評註

臺北市立建國高級中學 數學科

問題編號

16001

設正整數 n 被 $3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ 除的餘數中有 4 個 $1 \cdot 2$ 個 $2 \cdot 求滿足條件的 <math>n$ 之最小值。

【簡答】 457

【詳解】

若 n 被 6 除餘數為 2 ,則 n 是偶數且 n 被 3 除餘數為 2 ,

得n被4除餘數為1,與n是偶數矛盾。

所以n被6除餘數為1,則n是奇數且n被3除餘數為1,

得n被4除餘數為1,得n被8除餘數為1,

得n被5除餘數為2,得n被7除餘數為5,

因為n被3、4、6、8除的餘數均為1,

所以 n = [3,4,6,8]k+1 = 24k+1, 其中 k 是整數。

因為n被5除餘數為2,

 \Rightarrow *k* = 5*h*, 5*h* + 1,5*h* + 2,5*h* + 3,5*h* + 4 代 \land *n* = 24*k* + 1 討論 ,

得 k = 5h + 4 ,所以 n = 120h + 97 ,其中 h 是整數。

又因為 n 被 7 除餘數為 2,令 $h=7m,7m+1,\cdots,7m+6$ 代入 n=120h+97討論,得 h=7m+3,所以 n=840m+457,其中 m 是整數。

所以n的最小值為457。

問題編號

16002

已知某數列 < a_n >中的 a_1 = 1 , a_{108} = 108 ,且當 $n \ge 3$ 時 , a_n 為前 n-1 項之算術平均數,求 a_2 之值。

【簡答】 215

【詳解】

當 $n \ge 3$ 時,

$$a_{n+1} = \frac{a_1 + a_2 + \dots + a_{n-1} + a_n}{n} = \frac{a_1 + a_2 + \dots + a_{n-1} + \frac{a_1 + a_2 + \dots + a_{n-1}}{n-1}}{n}$$

$$= \frac{(n-1)(a_1 + a_2 + \dots + a_{n-1}) + (a_1 + a_2 + \dots + a_{n-1})}{n(n-1)} = \frac{n(a_1 + a_2 + \dots + a_{n-1})}{n(n-1)}$$

$$= \frac{a_1 + a_2 + \dots + a_{n-1}}{n-1} = a_n$$

$$\exists a_1 = a_2 + \dots = a_{108} = 108$$

$$\exists a_2 = a_4 = \dots = a_{108} = 108$$

$$\exists a_3 = a_4 = \dots = a_{108} = 108$$

$$\exists a_3 = a_4 = \dots = a_{108} = 108$$

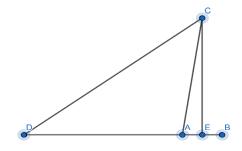
$$\exists a_3 = a_4 = \dots = a_{108} = 108$$

$$\exists a_3 = a_4 = \dots = a_{108} = 108$$

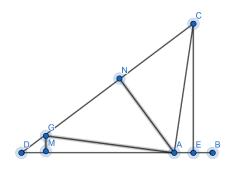
問題編號

16003

如圖所示,點 A 介於點 B 與點 D 之間,且 \overline{CE} 與 \overline{BD} 垂直於點 E,設 $\overline{AC}=1$ 、 $\overline{AD}=x$ 、 $\overline{AE}=y$, $\angle BAC$ 是銳角且 $\angle BAC=3\angle BDC$,試證明: $x^3-3x-2y=0$ 。



【證明】



設 $\angle BDC = \theta$, 則 $\angle BAC = 3\theta$,

在 \overline{CD} 上作點 G 使得 $\overline{AG} = \overline{AC} = 1$,

又設點 G 至 \overline{AD} 的垂足為 M、點 A 至 \overline{CD} 的垂足為 N

因為 $\angle BAC = 3\angle BDC$, 所以在 ΔADC 中可得 $\angle ACD = \angle BAC - \angle BDC = 2\theta$

設 $\overline{GC} = z$,因為 $\overline{AG} = \overline{AC}$,所以 ΔACG 是等腰三角形,

得
$$\overline{CN} = \overline{GN} = \frac{z}{2}$$
和 $\angle AGC = \angle ACG = \angle ACD = 2\theta$,

在 ΔGAD 中因為 $\angle DAG = \angle AGC - \angle ADG = 2\theta - \theta = \theta = \angle ADG$,

所以 ΔGAD 是等腰三角形, $\overline{AG} = \overline{DG}$ 、 $\overline{DG} = \overline{AC} = 1$ 、 $\overline{AM} = \overline{DM}$,

因為 ΔDGM 、 ΔDCE 、 ΔDAN 都是直角三角形,

且三個三角形都有一個角度等於 ZBDC,

所以此三個三角形皆相似,因此 $\frac{\overline{DE}}{\overline{DC}} = \frac{\overline{DM}}{\overline{DG}} = \frac{\overline{DN}}{\overline{DA}}$,

因 為
$$\overline{DM} = \frac{\overline{AD}}{2} = \frac{x}{2}$$
 、 $\overline{DG} = \overline{AG} = \overline{AC} = 1$ 、 $\overline{DE} = \overline{AD} + \overline{AE} = x + y$ 、

$$\overline{DC} = \overline{DG} + \overline{GC} = 1 + z$$
, $\overline{DN} = \overline{DG} + \overline{GN} = 1 + \frac{z}{2}$,

所以綜合以上可得 $\frac{x+y}{1+z} = \frac{x}{2} = \frac{1+\frac{z}{2}}{x}$,

交叉相乘整理消去 z 後可得 $x^3 - 3x - 2y = 0$ 。

16004

求最大正整數 n,滿足將正整數 1 到 400 任意填入 20×20 的 400 個方格中,則總有一行或一列的其中兩數之差不小於 n。

【簡答】 209

【詳解】

法 1:

以下的表格中,每列之差不大於 209,每行之差不大於 190,因此 $n \le 209$ 。

									0	01	02	03	04	05	06	07	08	09	10
1	2	3	4	5	6	7	8	9	0	11	12	13	14	15	16	17	18	19	20
	2			_		_		0		2.1	2.0				26		20	20	2.0
1	2	3	4	5	6	7	8	9	0	21	22	23	24	25	26	27	28	29	30
1	2	3	4	5	6	7	8	9	0	31	32	33	34	35	36	37	38	39	40
1		3	+	3	U	/	0	9	U	31	32	33	34	33	30	37	30	33	40
1	2	3	4	5	6	7	8	9	0	41	42	43	44	45	46	47	48	49	50
1	2	3	4	5	6	7	8	9	0	51	52	53	54	55	56	57	58	59	60
1	2	3	4	5	6	7	8	9	0	61	62	63	64	65	66	67	68	69	70
1	2	2	,	_		_	0	0	0	7.1	7.0	7.0	7.4	7.5	7.6		7.0	7.0	0.0
1	2	3	4	5	6	7	8	9	0	71	72	73	74	75	76	77	78	79	80
	_				_														
1	2	3	4	5	6	7	8	9	0	81	82	83	84	85	86	87	88	89	90
1	2	3	4	5	6	7	8	9	00	91	92	93	94	95	96	97	98	99	00

01	02	03	04	05	06	07	08	09	10	01	02	03	04	05	06	07	08	09	10
11	12	13	14	15	16	17	18	19	20	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80	71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	00	91	92	93	94	95	96	97	98	99	00

法 2:

設 $M = \{1,2,3,...,91\}$, $N = \{300,301,302,...,400\}$,

欲證:在任意 20×20 方格中,必有一行或一列有集合 M , N 中各一個數。 證明如下:

將 1 到 400 任意填入 20×20 的 400 個方格中,

設表格中共有i行j列有M中的數,共有k行m列有N中的數,

則 $i+j \ge 2\sqrt{ij} \ge 2\sqrt{91}$,因此 $i+j \ge 20$,

同理, $k+m\geq 2\sqrt{km}\geq 2\sqrt{101}$,因此 $k+m\geq 21$,所以, $i+j+k+m\geq 41$,由抽屜原理,必有一行或一列有集合 M,N 中各一個數。

因此最大正整數 n=209。

16005

求滿足 $3p^2 + 2p + 27 = 4m^2 + 12m$ 的所有質數 p 和正整數 m 。

【簡答】 p=5, m=4

【詳解】

由題設可得 p(3p+2) = (2m-3)(2m+9) ,所以 $p \mid (2m-3)(2m+9)$ 。 由於 p 是質數,故 p|2m-3或 p|2m+9。

- (1) 若 $p \mid 2m-3$, $\Rightarrow 2m-3=kp$, 其中 k 是整數。於是 2m+9>kp, $4p^2 = 3p^2 + p^2 \ge 3p^2 + 2p = (2m-3)(2m+9) > k^2p^2$ 得 $k^2 < 4$, 從而 k = 1 或 k = -

 - (i) $\stackrel{.}{=} k = 1 : \begin{cases} 2m 3 = p \\ 2m + 9 = 3p + 2 \end{cases}$ $\stackrel{.}{=} p = 5 \\ m = 4 \end{cases}$ (ii) $\stackrel{.}{=} k = -1 : \begin{cases} 2m 3 = -p \\ 2m + 9 = -(3p + 2) \end{cases}$ $\stackrel{.}{=} p = -7 \\ m = 5 \end{cases}$, $\stackrel{.}{=} r = -7$
- (2) 若 $p \mid 2m+9$, $\Rightarrow 2m+9=kp$,其中 k 是正整數。
 - (i) 當 p > 11 時,有 2m-3 = kp-12 > kp-p = (k-1)p $4p^2 = 3p^2 + p^2 \ge 3p^2 + 2p = (2m-3)(2m+9) > k(k-1)p^2$ 得 k(k-1) < 4 , 從而 k=1 或 k=2 ∘
 - (a) 當 k=1 : $\begin{cases} 2m-3=3p+2 \\ 2m+9=p \end{cases}$, 這不可能。
 - (b) $\stackrel{.}{=} k = 2$: $\begin{cases} 2m 3 = \frac{3p + 2}{2} \\ 2m + 9 = 2n \end{cases}$ $\neq k = 26$ $\Rightarrow k = 2$ $\Rightarrow k = 2$
 - (ii) 當 $p = 2 \times 3 \times 7 \times 11$ 時,都不合。 綜合上述(1)、(2),可得 $\begin{cases} p=5\\ m=4 \end{cases}$

16101

已知 a,b 為互質的兩正整數且 a < b ,若 a + b = 4692 ,則這樣的有序數對 (a,b) 共有幾組?

【簡答】 704

【詳解】

由題意知 (a,b)=1,則 (a,a+b)=1,即 a 與 4692 互質。 因 4692 = $2^2 \times 3 \times 17 \times 23$,

故小於等於 4692 且和 4692 互質的數共有 4692× $\frac{1}{2}$ × $\frac{2}{3}$ × $\frac{16}{17}$ × $\frac{22}{23}$ =1408個。

又 a < b ,知所求為 $1408 \times \frac{1}{2} = 704$ 。

問題編號

16102

數列 $\langle a_n \rangle$ 定義為: $a_1 = \frac{1}{2}, a_n = \frac{2n-3}{2n} a_{n-1}$, $n=2,3,\cdots$ 。 證明: 對任意正整數 n ,均有 $a_1+a_2+\cdots+a_n<1$ 。

【證明】

由題設可知對任意正整數 n ,均有 $a_n > 0$,且

 $a_k = (2k-3)a_{k-1} - (2k-1)a_k , k = 2,3,\cdots$

所以有

$$\sum_{k=1}^{n} a_k = a_1 + \sum_{k=2}^{n} ((2k-3)a_{k-1} - (2k-1)a_k)$$

$$= a_1 + a_1 - (2n-1)a_n$$

$$= 1 - (2n-1)a_n$$
< 1

16103

在拋物線 $y=x^2$ 的圖形上,任取兩格子點 $P_0(x_0,y_0)$ 、 $P_1(x_1,y_1)$,其中 $y_0>3$ 且 $y_1>3$ 。

試證明:若線段 $\overline{P_0P_1}$ 與y軸有交點Q,則Q點y坐標的值必不為質數。

【證明】

若線段 $\overline{P_0P_1}$ 與y軸有交點,則 x_0,x_1 為一正一負,

不失一般性假設 $x_0 < 0, x_1 > 0$ 。

過
$$P_0(x_0, y_0)$$
、 $P_1(x_1, y_1)$ 的直線方程式為 $y - y_0 = \frac{y_1 - y_0}{x_1 - x_0}(x - x_0)$,

將
$$x = 0$$
 及 $y_0 = x_0^2$ 、 $y_1 = x_1^2$ 代入 ,

以得
$$Q$$
點 y 坐標為 $y = \frac{x_1^2 - x_0^2}{x_1 - x_0}(-x_0) + x_0^2 = (x_1 + x_0)(-x_0) + x_0^2 = -x_0x_1$ 。

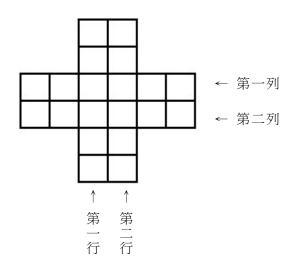
又 y_0 為大於 3 的整數,所以 $y_0 \ge 4$, $x_0 \le -2$,同理 $x_1 \ge 2$ 。

因為 $y = -x_0 x_1$ 且 $x_0 \le -2$, $x_1 \ge 2$, 表示 y 不是質數,原命題得證。

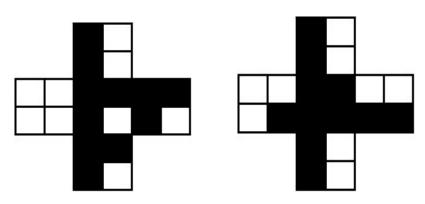
問題編號

16104

一幾何圖形是由 20 個正方形所構成,如下圖,定義中間最長的兩行為第一行及第二行、中間最長的兩列為第一列及第二列。將 20 個正方形的其中 11 個塗成黑色,且第一行、第二行、第一列、第二列被塗黑的正方形數量皆為偶數個,請問有幾種不同的塗色方式?(若兩個塗色方法經旋轉後變成一樣的,則視為同一種塗色方式)

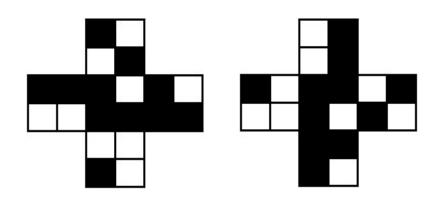


例如:



上左圖是合法的塗色方式,總共塗了 11 個,且第一行塗了 6 個、第二行塗了 2 個、第一列塗了 4 個、第二列塗了 2 個,皆塗了偶數個。

上右圖是不合法的塗色方式,總共塗了11個,但第二列塗了5個,不是偶數個。



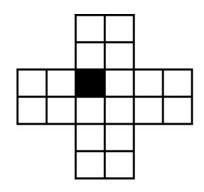
而上面兩個圖形是同一種塗色方式,因為左圖經順時針旋轉 90°後會與右圖完全相同。

【簡答】 2608

【詳解】

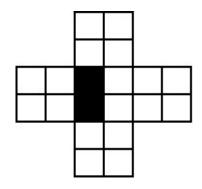
因為旋轉後若完全一樣則視為同一種塗色方式,所以先固定中央四個方格的塗色方式,再討論其他方格。

方案一:



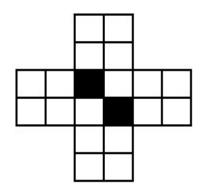
如此一來,第一行和第一列各要再塗奇數個,第二行和第二列各要再塗偶數個,加起來總共要再塗 10 個,是可行的。

方案二:



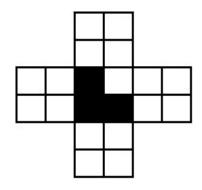
如此一來,第一行和第二行各要再塗偶數個,第一列和第二列各要再塗奇數個, 加起來總共要再塗 9 個,是不可行的。

方案三:



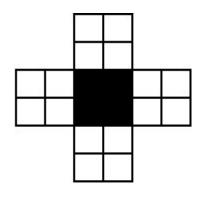
如此一來,第一行、第二行、第一列和第二列都要再塗奇數個,加起來總共要再塗9個,是不可行的。

方案四:



如此一來,第一行和第二列要再塗偶數個、第二行和第一列都要再塗奇數個, 加起來總共要再塗 8 個,是可行的。

方案五:



如此一來,第一行、第二行、第一列和第二列都要再塗偶數個,加起來總共要再塗 7個,是不可行的。

綜合以上,只有方案一和四是可行的,另外拿出來討論。

設 (a,b,c,d) 表示扣掉中間四格後,第一行再塗了 a 格、第二行再塗了 b 格、第一列再塗了 c 格、第二列再塗了 d 格。而 4 格裡選 0 格來塗有 1 種方法、4 格裡選 1 格來塗有 4 種方法、4 格裡選 2 格來塗有 6 種方法、4 格裡選 3 格來塗有 4 種方法、4 格裡選 4 格來塗有 1 種方法。以下列出所有可能的情形和方法數:

方案一:

(a,b,c,d)	方法數	(a,b,c,d)	方法數
(1,2,3,4)	$4\times6\times4\times1=96$	(3,2,1,4)	$4\times6\times4\times1=96$
(1,4,1,4)	$4 \times 1 \times 4 \times 1 = 16$	(3,2,3,2)	$4\times6\times4\times6=576$
(1,4,3,2)	4×1×4×6=96	(3,4,1,2)	4×1×4×6 = 96
(3,0,3,4)	$4 \times 1 \times 4 \times 1 = 16$	(3,4,3,0)	$4 \times 1 \times 4 \times 1 = 16$

以上共 1008 種。

方案四:

(a,b,c,d)	方法數	(a,b,c,d)	方法數
(0,1,3,4)	$1\times4\times4\times1=16$	(2,3,1,2)	$6 \times 4 \times 4 \times 6 = 576$
(0,3,1,4)	1×4×4×1=16	(2,3,3,0)	$6\times4\times4\times1=96$
(0,3,3,2)	$1\times4\times4\times6=96$	(4,1,1,2)	1×4×4×6=96
(2,1,1,4)	6×4×4×1=96	(4,1,3,0)	$1\times4\times4\times1=16$
(2,1,3,2)	$6 \times 4 \times 4 \times 6 = 576$	(4,3,1,0)	$1\times4\times4\times1=16$

以上共 1600 種。

方案一和方案四合計1008+1600=2608種。

16105

已知甲的速度比乙快,兩人同時從圓形跑道上同一點出發,沿順時針方向跑步。過一段時間,甲第一次從背後追上乙,此時甲立即背轉身子,以原來的速度沿逆時針方向跑去。當兩人兩次相遇時,乙恰好跑了3圈,若甲的速度為每分鐘120公尺,試求乙的速度每分鐘為多少公尺?

【簡答】
$$40+40\sqrt{10}$$

【詳解】

設乙的速度v,則甲的速度為kv甲第一次追上乙的時間為 t_1 ,再次相遇的時間為 t_2 若圓形跑道周長為l

$$\begin{cases}
kv \times t_1 - v \times t_1 = l \cdots (1) \\
kv \times t_2 + v \times t_2 = l \cdots (2) \\
v \times (t_1 + t_2) = 3l \cdots (3)
\end{cases}$$

由(1)得
$$vt_1 = \frac{l}{k-1}$$
,由(2)得 $vt_2 = \frac{l}{k+1}$,

代入(3)得
$$\frac{l}{k-1} + \frac{l}{k+1} = 3l \Rightarrow 3k^2 - 2k - 3 = 0$$

$$\therefore k = \frac{1 \pm \sqrt{10}}{3} \ (\ \text{負不合} \)$$

所以乙每分鐘跑
$$120 \times \frac{1+\sqrt{10}}{3} = 40 + 40\sqrt{10}$$
公尺